
Journal of  Statistical Physics, Vol. 76, Nos. 3/4, 1994 

Wave Propagation Phenomena from a Spatiotemporal 
Viewpoint: Resonances and Bifurcations 

Nadine Aubry, 1'2 Fernando Carbone, 1,3 Ricardo Lima,  4 and Said Slimani t'2 

Received May 18, 1993; final March 21, 1994 

By using biorthogonal decompositions, we show how uniformly propagating 
waves, togehter with their velocity, shape, and amplitude, can be extracted from 
a spatiotemporal signal consisting of the superposition of various traveling 
waves. The interaction between the different waves manifests itself in space-time 
resonances in case of a discrete biorthogonal spectrum and in resonant 
wavepackets in case of a continuous biorthogonal spectrum. Resonances appear 
as invariant subspaces under the biorthogonal operator, which leads to closed 
sets of algebraic equations. The analysis is then extended to superpositions of 
dispersive waves for which the (Fourier) dispersion relation is no longer linear. 
We then show how a space-time bifurcation, namely a qualitative change in the 
spatiotemporal nature of the solution, occurs when the biorthogonal operator is 
a nonholomorphic function of a parameter. This takes place when two eigen- 
values are degenerate in the biorthogonal spectrum and when the spatial and 
temporal eigenvectors rotate within each eigenspace. Such a scenario applied 
to the superposition of traveling waves leads to the generation of additional 
waves propagating at new velocities, which can be computed from the spatial 
and temporal eigenmodes involved in the process (namely the shape of the 
propagating waves slightly before the bifurcation). An eigenvalue degeneracy, 
however, does not necessarily lead to a bifurcation, a situation we refer to as 
being self-avoiding. We illustrate our theoretical predictions by giving examples 
of bifurcating and self-avoiding events in propagating phenomena. 
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1. INTRODUCTION 

While temporal dynamical systems theory can describe the motion of 
individual particles or the dynamics in closed systems whose spatial com- 
plexity is severely constrained by the presence of boundaries, there is no 
doubt that fully spatiotemporal dynamics characterize open and spatially 
extended systems. While in the former case it suffices to consider the state 
of the system as a function of time u(t) at any position Xo, in the latter 
situation this description is no longer sufficient and we need to take into 
account the full space-time behavior, u(x, t). In this case, there is not much 
hope, from a theoretical and experimental viewpoint, for a deep under- 
standing of the mechanisms involved, from techniques which freeze space 
and make time vary or vice versa: a large variety of new phenomena 
involving a simultaneous evolution in space and time appear, such as wave 
propagations. 

While oscillations are numerous in temporal dynamical systems, waves 
are ubiquitous in spatiotemporal dynamics. The simplest example is a 
uniformly traveling wave of any shape (e.g. sinusoidal, solitary), invariant 
under spatial translation after the appropriate time shift, namely invariant 
under spatiotemporal translation. Nevertheless, wave motions in nature are 
not so simple, often consisting of superpositions of waves with various 
amplitudes and velocities. Even when this superposition is the sum of 
uniformly traveling waves, the extraction of the individual waves, the deter- 
mination of their velocity and shape, and the identification of resonances 
(due to the interactions between the waves) is nontrivial and, to our 
knowledge, has not been previously resolved. Moreover, it should be 
understood that the question we raise, together with the answer we 
propose in this paper, goes much beyond pattern recognition. Our aim is 
not the extraction of "spatial organized patterns" or "coherent structures," 
but rather an understanding of the dynamics of u(x, t) in space and time, 
and particularly how the dynamics in space and the dynamics in time are 
intimately connected. The study of such dynamics leads to the investigation 
of invariant subspaces under the dynamic operator [ whose kernel is simply 
u(x, t) itself, see below], namely independent portions of the dynamics. 
Such invariant subspaces are indeed found in this paper, having the physi- 
cal interpretation of wave resonances. Finally, a complete comprehension 
of such space-time dynamics should encounter the possibility of bifurca- 
tions as a parameter varies. This leads to the next question. 

Another issue concerns the route to spatiotemporal complexity. Even 
when the first instability of a physical phenomenon gives rise to a uniformly 
traveling wave, subsequent instabilities occurring as a parameter varies 
often lead to much more complex space-time behavior. The question then 
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arises: how does a traveling wave become unstable and lose its spatiotem- 
poral symmetry? Can one identify (space-time) bifurcations to successive 
(structurally) stable states before reaching an apparently fully disordered 
state? For instance, let us consider a wake flow behind a circular cylinder 
for which the primary instability leads to a Karman vortex street, namely 
a "street" of vortices propagating downstream (we neglect here the decrease 
in amplitude due to the viscous dissipation). As Reynolds number 
increases, the flow clearly deviates from a traveling wave, undergoes defor- 
mations as it moves downstream, and eventually becomes turbulent at 
higher Reynolds numbers. Such a route toward space-time complexity is 
not yet understood. The same question arises for the surface dynamics of 
film flow on an incline 128'29) or for shallow water long waves, for which it 
is known that the (Fourier) dispersion relation is, to a first approximation, 
linear. 142) When the latter is nonlinear, the difficulty is even increased. This 
is, for instance, the case of the motion of the water due to a disturbance 
over a restricted area of the surface, for which it is well known that the 
propagation speed is an increasing function of the wavelength. Dispersion 
also occurs in binary fluid convection, t27~ Other examples are furnished by 
partial differential equations (see, e.g., ref. 44). We emphasize here that 
since we consider the generation of space-time complexity, we concentrate 
on spatiotemporal bifurcations through which the space-time qualitative 
nature of the solution is altered: a change in the shape or the propagation 
speed of a traveling wave, for instance, is not, a priori, a space-time bifur- 
cation, in contrast with the appearance of a new traveling wave in the 
solution. The question we address here is thus different from that treated 
in ref. 10, where a spatial study (ignoring the time dependence) is carried 
out to analyze the shape evolution of a uniformly traveling wave. Since a 
space-time bifurcation, and particularly the appearance of a new propaga- 
tion speed, is related to the shape of the wave, as we show in this paper, 
it is possible that the "bifurcations" (in the classical sense of temporal 
dynamical systems theory) the previous authors identify may be related 
to space-time bifurcations (in the sense of Section 7 below), but more 
investigations need to be carried out before such conclusions can be drawn. 
Moreover, the effect of resonances on the temporal behavior of the waves, 
such as the generation in time of new traveling waves, as in refs. 20 and 
22-24, is a different question than that we treat here. 

While in the past, spatiotemporal complexity was treated statistically, 
our approach is full~, deterministic and deals with the "microscopic" space- 
time function u(x, t) itself, although we recover statistical properties in a 
natural manner since they correspond to various products of the dynamic 
operator and its adjoint (two-point correlations are a particular case). ~3~ 
Since the space-time symmetries of the spatiotemporal dynamics on which 
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this paper is based manifest themselves on the statistics, one can detect the 
spatial (resp. temporal) component of the symmetry through the spatial 
(resp. temporal) two-point correlations, for instance. Whether one can 
carry out the analysis further and derive a statistical mechanics of wave 
propagation phenomena is still an open question, although a good "macro- 
scopic" function is the entropy introduced in previous work. ~3~ We show 
here how the latter is related to spatiotemporal bifurcations, for instance. 
We point out, however, that while this quantity may be useful for detecting 
bifurcations, a full space-time analysis is necessary for understanding the 
latter. 

In this paper, we address the previous issues by using biorthogonal 
decompositions which have been proposed and used as tools for studying 
spatiotemporal dynamics in general, c3"4"7"4~ This may appear awkward at 
first since the Fourier analysis is commonly believed to be the "best" for 
dealing with propagating phenomena. Let us suppose that u(x, t), defined 
on a spatial domain X and a temporal interval T, is the spatiotemporal 
function we would like to study. Biorthogonal decompositions provide the 
smallest linear subspace z(X) containing the orbit ~,(x) (described as time 
runs) defined by 

V x e X  r 

and the smallest linear subspace z(T) containing the orbit q.,.(t) (described 
as the spatial position varies) defined by 

Vt6T, qx(t)=u(x,t) 

It follows that these two subspaces adapt themselves to the evolution of 
the spatiotemporal dynamics. While it is true that biorthogonal temporal 
and spatial modes coincide with Fourier modes in the case of a uniformly 
traveling wave, this is not the case, as we show in this paper, as soon as 
(at least) another traveling wave, even of small amplitude, appears in the 
signal. The difference between biorthogonal and Fourier modes, even small 
in certain cases, contains precisely the interesting information permitting 
the detection and identification of resonances between various propa- 
gating waves, and provides a tool for analyzing space-time bifurcations of 
propagating phenomena. It is thus a conceptual mistake, from our view- 
point and for our purpose, to identify a priori the two decompositions. 
Moreover, the fact that spatial biorthogonal modes of a uniformly traveling 
wave are Fourier modes (which is also necessarily the case for the modes 
decomposing the spatial two-point correlation and therefore those obtained 
in the Karhunen-Lo6ve expansion when time is considered as the sampling 
variable) is often considered as a negative point in previous works where 
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a substitute decomposition is sought in the direction of propagation (see, 
e.g., refs. 12, 32, and 39). In our work, it is an enormous advantage, along 
with the fact that temporal modes are also of the Fourier type, since it 
provides a mean for analyzing the information (chronos and topos) given 
by the biorthogonal decomposition. It is obvious that if other symmetries 
than translations are involved (in a superposition process, for instance), 
other "fundamental" modes should be used for this purpose. However, the 
direct use of these modes for decomposing the signal is inappropriate for 
the investigation of the spatiotemporal structure of the signal and its space- 
time bifurcations. Particularly for the classification and prediction of the 
latter (see Section 7" below), the isomorphism between the subspaces x(X) 
and x(T) (characterizing biorthogonal decompositions) is necessary. 

We now recall that biorthogonal decompositions consist in expanding 
a function u(x, t) (where usually x and t denote space and time variables) 
into orthogonal modes in a Hilbert space H(X) (xeX)  and orthogonal 
modes in a Hilbert space H(T) (te T) which are related by a one-to-one 
correspondence. Such expansions correspond to the spectral decomposi- 
tions of the operators V: 

0 o*) V = ( U  

where U, which acts from H(X) to H(T), is defined as 

Vq~ e H(X), (Uqg)(t) = Iv u(x, t) qg(x) din(x) 

the adjoint operators U* from H(T) to H(X) being such that 

V~ 6 H(T), (U*~b)(x)=frU(X, t)~O(t)dffs(t) 

where din(x) [resp. drh(t)] denotes the measure defining the scalar product 
in H(X) [resp. H(T)]  and the bar refers to the complex conjugate. If V is 
a compact operator, the corresponding biorthogonal decomposition can be 
written as 

N 

u(x. t)= ~ A,,qL,(x) O,,(t) 
n = l  

with A~ 1> A2 >/ ""  As > 0 and (tp,,, q),,) = (Lb,,, ~b,,) = 6 ..... which converges 
in norm. The parentheses here denote the scalar products in H(X) and 
H(T). Hereafter, the spatial eigenmodes ~o,, are called topos and the tern- 
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poral eigenmodes r are called chronos. The isomorphism between a topo 
and a chrono is given by the operator U itself, that is, Ucp,, = A,,~,,. The 
spatiotemporal dynamics can then be studied in the temporal configuration 
space x ( T ) = K e r ( U * )  • spanned by the chronos and the spatial one 
z(X) = Ker(U) • spanned by the topos. Such a decomposition is obviously 
not new, it originates in the spectral decomposition of operators with sym- 
metric kernels, which can be found early in textbooks t~6~ for compact 
operators and for operators with Carleman kernels in ref. 43. As we men- 
tioned above, we recall that the probability theory tool referred to as the 
Karhunen-Lo6ve expansion, t24"3~) in which the sampling variable is time, 
corresponds to the spectral decomposition of U'U, whose kernel is the 
spatial two-point correlation. It has been proposed by Lumley for its 
application to turbulence 13"-'331 (see also ref. 11) and applied in a number 
of studies (see, e.g., refs. 6, 9, 17, 19, 26, 38, 39, and 40 and references 
therein). In our work, it is fundamental to consider the operator V for a 
simultaneous treatment of space and time. Moreover, the introduction of 
general Hilbert spaces H(X) and H(T) along with the consideration of 
noncompact operators are fundamental when spectra are continuous, as we 
show in Section 6 (see also ref. 5). 

In this context, space-time symmetries have been introduced ~4~ as a 
pair of operators (S, S) (or a group of such operators), ,.~ acting on H(T) 
and S on H(X), which intertwine the operator U, namely S U =  US, and 
whose conjugate pair (S*, S*) also satisfies S ' U =  US*. This was shown to 
be equivalent to a degeneracy of the topos and chronos, in the sense that 
if Uq)n=A,O,,, then US~o,,=A,,SO,,. It is interesting to note that such 
spatiotemporal symmetry manifests itself in the statistics recovered by 
considering various powers of the operator V. The second-order statistics 
are the kernels of the operators UU* and UU* (obtained from V:), 
which, in case of a spatiotemporal symmetry, commute with ,~ and S, 
respectively: SUU* = UUS and SU*U= U'US.  An example of such sym- 
metry is satisfied by a traveling wave of velocity c. ~4~ In this case, the 
spatial and temporal symmetry operators involved are regular representa- 
tions of R, namely translations: 

( Sxo q~ )(x) = ~o(x-  Xo) 

(~,oO )(t) = q4 t -  to) 

such that Xo + Cto = 0, making all topos and chronos Fourier modes, and 
the spectrum degenerate, of order two. Other examples involving the group 
of dilations and noncompact operators have been used for the treatment of 
fully developed (incompressible and compressible) turbulence tS-s) (see also 
ref. 2 for the general use of biorthogonal decompositions in turbulence). 
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2. FOURIER TRANSFORM AND BIORTHOGONAL 
DECOMPOSITIONS 

The use of the Fourier transform in the spectral analysis of linear 
operators in a Hilbert space is a well-known subject (see, e.g., ref. 36). 
Here, we limit ourselves to the minimum necessary for defining some 
notations and terminology and for clarifying how we utilize these notions 
in the context of biorthogonal decompositions. 

On the one hand, the Fourier analysis of u(x, t), x~X,  t~ T when X 
and T are bounded domains and u(x, t) is spatially and temporally peri- 
odic, can be viewed as a decomposition which uses specific orthonormal 
bases of LZ(X) and LZ(T). 

On the other hand, one may consider the Fourier transforms as two 
linear operators F and ~ as in the present study. The spatial Fourier 
transform F, 

(F~0)(k) = c' ~x ~o(x) eik" dx (2.1) 

is defined as an operator from L2(X) to LZ(K), where K is the domain of 
wavenumbers ( K=  X), namely integers if X is a bounded domain and R if 
X =  R. Similarly, the temporal Fourier transform is defined from L2(T) to 
L2(s where g2 is the frequency domain (f2 = T), such that 

(Ptp)(~) = c" f ~,(t) e -'~ dt (2.2) 
T 

The coefficients introduced in the definitions (2.1) and (2.2) of the spatial 
and temporal Fourier transforms are normalization constants so that the 
operators F and F, by the Parseval theorem, are unitary. Therefore, the 
spectral analysis of the operator U and that of the operator 

O=FUF ' (2.3) 

are equivalent. More precisely, if 

u(x, t )=I  A<PA(X) ~b A( t) dm(A ) (2.4) 

for m-almost all A, is the biorthogonal decomposition of u(x, t) corre- 
sponding to the spectral analysis of the operator U, dm being the spectral 
measure, then the corresponding biorthogonal decomposition of the space- 
time Fourier transform ~(k, o~) is 

~(k, oJ)= ~ A~o A(k) CA(w) din(A) (2.5) 
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for m-almost all A, where 

~bA = r~0A (2.6) 

6A=F$A (2.7) 

In particular, if U has only a point spectrum (eigenvalues), so does 0 and 
the biorthogonal decompositions of u and a are related by the Fourier 
transforms of the topos and chronos. In other words, if 

u(x, t) = ~  A,,qL,(x) ~,,(t) (2.8) 
t t  

then 

fi(k, co)= ~ A,,(o,(k) ~,,(w) (2.9) 
n 

Now, if u(x, t) is a traveling wave, namely 

u(x - Xo, t) = u(x, t + to) (2.10) 

for all x, x o ~ X, t, t o ~ T, such that Xo + Cto = 0, c being the propagation 
speed of the wave, also called the velocity of the wave, then U is a multi- 
plication operator, i.e., F - F - n  "diagonalizes" U, and the spectral analysis 
of U is given by the Fourier analysis, namely the biorthogonal decomposi- 
tion (2.4) of u(x, t) coincides with the Fourier transform) 4~ 

In particular, if U has only a point spectrum as is the case if X and 
T are bounded domains, then ~b,, and 6,, in (2.9) are delta functions. Then, 
considering a traveling wave with a shape g such that 

u(x, t) = g(x  - ct) (2.11 ) 

for all x ~ X and all t e T, where c is the wave velocity, we derive the well- 
known localization property of the Fourier transform ~: 

fi(k, co) = o~(k) if co=ck 
(2.12) 

= 0 otherwise 

Obviously, in general, U =  [ 'UF- '  is not a "diagonal" operator and there- 
fore the biorthogonal decomposition of u(x, t) does not coincide with the 
Fourier decomposition. This is the case when, for instance, u(x, t) is the 
superposition of two (or more) traveling waves of different speeds, which 
we treat in the next section. Then, as Fourier wrote, "we have therefore ... 
a problem whose solution demands attentive examination." 
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3. S U P E R P O S l T I O N  OF T W O  T R A V E L I N G  W A V E S  A N D  
R E S O N A N C E S  

We illustrate our technique by first treating the case of the superposi- 
tion of two traveling waves, ul with propagation speed cl and u 2 with 
propagation speed c2, such that lc~l < 1c2I. 

Since the case of continuous spectra will be treated in Section 6, we 
restrict ourselves to the situation where u~ and u2 are defined in a common 
bounded space-time domain, extended by periodicity. In this case, c~ and 
c2, when normalized by the ratio between the length of the spatial domain 
and that of the temporal interval, are necessarily rational numbers. Let us 
then set cl = Pl/ql (resp. c2 = P2/q2), where Pl and q~ (resp. P2 and qz) are 
incommensurate. The eigenequations for the operator 0 ,  + 0_, then become 

(0, + 02)~ =Aq~ (3.1a) 

( Ol + Oz)*~ = A~ (3.1b) 

The first (resp. the second) of these vectorial equations can be written 
as an infinite set of scalar equations, one for each frequency co~f2 
(resp. each wavenumber k ~ K). Let us denote g~ and g2 the shapes of the 
traveling waves ul(x, t)  and u2(x,t) [defined by (2.11)] for which we 
have the localization property (2.12) in Fourier space. It is clear that the 
equations corresponding to (3.1a) can take one of the following forms only: 
either 

~,(k) (O~ = A~,o (3.2) 

if co = api, a ~ 7/, i = 1 or i = 2, and then k = aqi; or 

g~(kl) (ok~ 'l-gz(k2) (Ok: = A~,o (3.3) 

if co=apl=bp2, a, b~77, and then k l=aq l  and kz=bq2. Similarly, the 
equations corresponding to (3.1b) takes only one of the following forms: 
either 

g,i(k) ~,o = A(Ok (3.4) 

i f k = a q i ,  a ~ Z , i = l  o r i = 2 ,  and then co = api, or 

g,(k) r +~z(k)  r = A~bk (3.5) 

if k=aq l  =bqz, a, b~Z ,  and then col =apt and co2=bp2. 
Due to the presence of equations of the type (3.3) and (3.5), a closed 

subset of equations (3.2)-(3.5) may require more than two equations. We 
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also notice that  some frequencies 09 or wavenumbers  k appear ing in (3.2) 
[resp. (3.4)-I may  also appear  in (3.5) [resp. (3.3)-I, thus forming a chain 
corresponding to a closed subset of equations. Of  course, some particular 
properties of the shapes g~ and g2 may introduce additional decouplings of 
the eigenequations since some of the Fourier  t ransforms g~(k) and ~2(k) 
may  be zero. However,  we consider the generic situation where this is not 
the case (see both our  comment  at the end of this section and the second 
example of Section 8 for a nongeneric situation). The appearance of chains 
of frequencies and wavenumbers  leads us to introduce the notion of a 
spat io temporal  resonance. 

D e f i n i t i o n  3.1.  A spat io temporal  resonance is a maximal  set of 
integers ogj, 09, ..... co,,, k l ,  k2 ..... k .... n and m being finite or infinite, such 
that 

o~i = c,  ki  (3.6) 

and 

oJi• l = c t j k  i (3.7) 

where either ct = 1 and then fl = 2, in which case i +  1 should be selected in 
(3.7), or c t = 2  and then f l =  1, in which case i - 1  should be selected in 
(3.7). Here, "maximal"  has the usual meaning of characterizing a set which 
cannot  be properly included in a larger one satisfying (3.6) and (3.7). Due 
to the chain rule used to go from (3.6) to (3.7) and back, a spat io temporal  
resonance satisfies the two following properties: 

(i) The frequencies co i and the wavenumbers  k; are in a strictly 
increasing order of their absolute values (since l ell < I c2l). 

(ii) The number  n of frequencies and the number  m of wavenumbers  
are simultaneously either finite or  infinite. 

When the number  n of frequencies and the number  m of wavenumbers  
are finite, n and m are related by the relation 

m = n + _ l  

We define the (possibly infinite) order of a spat io temporal  resonance by the 
smallest number  among  n and m. Before justifying the terminology 
"resonance" we explain how spat io temporal  resonances appear  in the 
spectral analysis of  U~ + U2. Hereafter,  we refer to the sets of  frequencies 
and wavenumbers  introduced in this definition as "resonances." 

k e m m a  3.2.  There is a one- to-one correspondence between the 
closed set of eigenequations (3.2)-(3.5) and resonances. 
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Proof. By easy inspection. Notice that for the sake of completeness, 
we need to include the "resonances" consisting of only one frequency co and 
one wavenumber k which realize the closure with only one equation of the 
type (3.2) and one equation of the type (3.4). In this case, the set oJ, k is 
maximal without linking Ul to U2, so that the terminology "resonance" is 
not quite appropriate. We refer to this particular set as a "degenerate 
resonance." 

Due to their maximal property (in the sense of Definition 3.1), 
resonances perform a partition o f /2  and K so that each o~ (resp. each k) 
belongs to one and only one resonance. Another remark is that for real 
functions gl and g2 the usual symmetry of the Fourier transform implies 
that only half of the equations in (3.2)-(3.5) are needed to solve the eigen- 
problem [those corresponding to (09, k), (~o, - k ) ,  where 09 and k are both 
positive, for instance]. 

We now show how a resonance is related to the spectral analysis of 
Ul + Uz by introducing a pair of orthogonal projectors (Ps, Pa) for each 
resonance. P,~, acting on LZ(t2), projects onto the subspace generated by the 
delta functions involving the frequencies 09 of a given resonance, and P6, 
acting on L2(K), projects onto the subspace generated by the delta functions 
involving the corresponding wavenumbers k (of the same resonance). We 
can then write a new lemma which essentially translates the content of 
Lemma 3.2 in the language of the spectral analysis of linear operators, 
a useful step toward the generalizations treated in the following sections. 

Lemma 3.3. The set of projections {e~} in L2(g2) and {P~} in 
L2(K), where 6 =  {o9 l, ~o2 ..... to,} and 6 =  {kl, k2 ..... kin} run in the set 9t 
of all resonances, are two resolutions of the identity such that 

Pg(0,  + 02 )=  (0 ,  + 02) P~ (3.8) 

Proof. It suffices to combine Lemma 3.2 with the eigenequations 
(3.1a) and (3.1b). We thus obtain 

gQ~ + 0 2 = ~  P~(O~ + (J~) P6 (3.9) 

which reduces the operator O~ + Oz in blocks, but, of course, the eigen- 
vectors are not delta functions, since Eqs. (3.2)-(3.5) cannot be decoupled 
inside a resonance. 

Before describing the solution of the eigenequations, we classify all 
possible resonances in a theorem. 

Theorem 3.4. According t o  the ratio c,/c2, we have one of the 
following situations: 
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(i) If ct = - c 2 ,  then there is an infinite number  of resonances, each 
resonance being of finite order  (in fact, of order  2). 

(ii) If  c~=nc2, which n~7/  and In[> 1, then there is an infinite 
number  of  resonances, each resonance being of infinite order. 

(iii) If  cj/c2 is not an integer, there is an infinite number  of reso- 
nances, each resonance being of finite order. In this case, resonances of all 
finite orders appear.  

Drool  Case (i) is the usual case, since a resonance merely consists of 
{co, -~o,  k, - k }  with co = ck. Moreover,  in this case, there is no degenerate 
resonances. 

Cases (ii) and (iii) are treated in the same manner ,  namely, from Eqs. 
(3.6) and (3.7), we write 

O J i = a i p  | = b i  p 2 (3.10) 

k i  = a i q l  = hi+ l q2 (3.11 ) 

where the coefficients a~ and b~ are integers. In addition, we suppose 
o3~ = c~k z (the t reatment  of the other case, i.e., co t = c2k~, is similar). Note  
that, because of the incommensura te  representation of c~ and c2, (3.10) and 
(3.11) are equivalent to (3.6) and (3.7). We then obtain the values of the 
integers a~ and bj 

�9 1 

a i = a l  (3.12) 
kCl /  

and 

b i + , = a ,  (CzY  ' q_2 (3.13) 
\ c l /  q2 

and subsequently the values of coi and k~ [-since (3.12) and (3.13) are 
equivalent to the existence of a resonance given by (3.10) and (3.11)'1: 

/ \ " - I  

~ {c2) '  PJ (3.14) 
kCn/ 

and 

I 

k i = a ,  (C2] i -  q, (3.15) 
\ c ~ /  

provided that  (3.12) and (3.13) define integers ai, bi+ i. 
In case (ii), since c2/c~ =n,  either a~ is a multiple of PlP2qnq2 and 
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then we get a resonance of infinite order because (3.12) and (3.13) produce 
integers a~ and b~+~ for all i, or a~ is not a multiple of Pl P2q~q,_, in which 
case we have a degenerate resonance (o9~, k~). For an infinite resonance, 
the frequencies col and wavenumbers ki both increase in a geometric 
sequence. 

In case (iii) we have c2 /c t=p /q  where again we have chosen an 
incommensurate pair (p, q). It is then easy to see that a necessary and 
sufficient condition for obtaining an integer ag (resp. b~+ i) from Eq. (3.12) 
[resp. (3.13)-I is-that a~ is a multiple of q~+~ (resp. ~q~-l, where ~ is 
independent of the exponent i). Therefore, since qi tends to infinity when i 
tends to infinity, for any a, (and therefore for any resonance), there exists 
an integer io such that if io > i then the condition cannot be fulfilled. This 
gives an upper bound for the order of the resonance. Conversely, we may 
construct resonances of any (finite) order by taking a, = q2q". Apart from 
a slight modification of the notation in Eqs. (3.2)-(3.5), the case where one 
of the traveling waves has zero or infinite velocity (corresponding to a 
steady or spatially uniform wave) has nothing special (see Remark 3.6 at 
the end of this section for a comment on this situation). 

Due to the block decomposition of 01 + 02 by resonances, we may 
now perform the complete spectral analysis of the sum of two traveling 
waves and even reconstruct each traveling wave from the biorthogonal 
decomposition of u~ + uz. This is performed via the following theorem. 

T h e o r e m  3.5. A spectral subspace of O, + 02 of dimension 2n is 
associated with each resonance of order n (n can be finite or infinite). The 
corresponding 2n topos and 2n chronos have a Fourier spectrum whose 
support is included in the set of waven.umbers and frequencies of the 
resonance. Moreover, a given wavenumber k~ (resp. a given frequency a~) 
cannot appear in two different resonances. The eigenvalues corresponding 
to a resonance of finite order are the roots of the corresponding charac- 
teristic polynomial of degree 2n. In this subspace, the wave has a temporal 
period z and a spatial period 7 (normalized with the size of the temporal 
and spatial domains) defined by 

(3.16) 

1 / ~  k; (3.17) 7=  

Furthermore, given the elements of the biorthogonal decomposition, Eqs. 
(3.2)-(3.5) define an iterative algorithm which permits the reconstruction of 
the two traveling waves. 
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ProoL The relation between resonances and spectral subspaces is 
given by Lemma3.3 .  Notice that, even if 6={kl ..... ki,...} and 6"= 
{w~ ..... w,. . .} do not have the same cardinality, because Uj + U2 is an 
isomorphism between the spectral subspaces, the number  of topos in 
P6L2(X) and the number  of chronos in P~LZ(T) are necessarily the same. 
This dimension of the subspaces is equal to min(2n, 2m), i.e., twice the 
order of the resonance. All the vectors in P,;L2(T), in particular the 
chronos, have a Fourier  spectrum whose support  is included in 6 =  
{oJ, ..... ~o~,...} and all the vectors in P6L2(X), in part icular  the topos, have 
a Fourier  spectrum whose support  is included in 6 = {k, ..... k~,...}. The fact 
that we have associated a space of dimension 2n to a resonance of order 
n is simply due to the symmetry  (co, k)--* ( -09 ,  - k )  when u~ and u 2 are 
real-valued. By Lemma 3.3, we can then find the eigenvalues of Uj + U2 by 
restricting 0~ + 02 to each subspace corresponding to a resonance. If the 
order n of the resonance is finite, the associated subspace is defined by a 
2n x 2n symmetric  matrix and the result concerning the eigenvalues follows. 

Now,  let q3~ l~ ..... ~l~ ,1,~1~ jl~,~ ~oa .... and be the topos and chronos of "1" h , - - - ~ - r r  ,--- 

a resonance. We can then write 

q~t)(x) ~o~J'(t) = ~ ~o~n(j) exp(ikyx) ~. r e x p ( - i o ) j . t )  (3.18) 
j j '  

where the ~b~ t* and the ,?,q~ l =  1 ..... are the solutions of the system of , r  6 , 

equations (3.2)-(3.5) corresponding to a given resonance 6 = {k I ..... kj,...}, 
6 =  {w~ ..... 09/,..}. Therefore, the restriction of the sum of the traveling 
waves uj + u 2 to this resonance becomes 

ul6.a,,(x,t)=~ AU~ ~ ~o~t,(j) exp(ikjx) "r ~ ~ (j )exp(-iwj.t) (3.19) 6 , 6 '  
t j j '  

from which the periods (3.16) and (3.17) are immediately deduced. The 
corresponding orbit  in the phase space is a closed Lissajous curve, as 
expected for a resonance. 

We now show how one can easily reconstruct the traveling waves u~ 
and u z from the bior thogonal  decomposi t ion of the superposed signal. For  
this we note that within each resonance there is always an equat ion of the 
type (3.2) or (3.4) with only one frequency aJ and one wavenumber  k. If 
o~ = c~kl, this equat ion is 

~ , (k ,  ) r = A~bk, (3.20) 

and if oJj = c2k~ it is 

~2(kl ) ~bk, = Ar (3.21) 
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We immediately deduce ~ ( k ~ )  in the first case and oa2(k~) in the second 
case. We now suppose that  we are in the first case, namely co~ = cl k~. We 
then proceed with a recurrence formula in which an equat ion of type (3.3) 
alternates with an equat ion of type (3.5): 

~2(ki) = A~J,o,_,/~ok,- d,(k,_, ) ~Ok,_,/~Ok, (3.22) 

and 

~,(k;) = A~b,,/r ..... - ~2(k,) r162 .... , (3.23) 

for i =  l, 2 ..... The fact that  these equations are ordered by increasing 
wavenumber  k i is important .  It implies that  the recurrence can run without 
taking into account  its parti t ion among  the various resonances, even if the 
latter can be easily identified from the bior thogonal  decomposi t ion by 
inspecting the Fourier  spectrum of the topos and chronos, as indicated in 
the theorem. Of  course, there is an exception in the previous algorithm. At 
zero wavenumber  and zero frequency, Eqs. (3.2) and (3.4) are degenerate, 
giving rise to one eigenvalue only 

A = 8 , (0 )  + g2(0) 

The case co I = c2kl can be treated exactly in the same manner.  This ends 
the proof  of Theorem 3.5. 

So far we have considered the generic situation where the Fourier  
transforms ~l (k)  and ~2(k) are nonzero for all k. We now investigate what 
is changed in the previous analysis if some of the amplitudes are zero, 
which can happen,  for instance, as a consequence of some symmetry.  Sup- 
pose that  a certain ~i(k) = 0, i =  I or  i =  2. If (k, o~ = Gk) is a degenerate 
resonance, then nothing special happens, since the two corresponding 
eigenequations (3.2) and (3.4) disappear  and the associated Fourier  trans- 
forms of the topos and chronos ~k and ~,o belong to the kernel of 0 and 
0 " .  If, instead, such a pair  (k, o )=Gk)  belongs to a (nondegenerate)  
resonance, we have to distinguish two cases: 

(i) If the given (k, o)) is in the first position or last position in the 
chain, then the situation is the same as in the case of  a degenerate 
resonance. 

(ii) Otherwise, (k, og) splits the resonance into two independent 
chains, or subresonances,  the reason being that, if ~ ( k ) = 0 ,  there is a 
splitting of the eigenequations into two independent closed sets of the type 
(3.2)-(3.5). 

R e m a r k  3.6.  Theorem 3.4 is valid in the case where one of the 
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velocities, for instance c,_, is zero (steady wave) or infinite (spatially 
uniform wave) and we should mention that nothing is really simplified in 
this situation. This implies that in the case of two waves traveling at non- 
zero velocities, the difficulties cannot be avoided by adopting the frame of 
reference of one of the traveling waves. In particular, when one of the 
waves has zero velocity (c2=0),  not only do the eigenequations not split 
into closed subsets of equations, but also there is a resonance of infinite 
order, as .we now show by writing the system of eigenequations: 

[ ~ ( 0 ) + ~ 2 ( 0 ) ]  ~bo+ ~ g,_(k)qSk=A~o (3.24) 
k ~ 0  

~, (k ) (ok=A~w,  k:/:O and 09=c~k (3.25) 

(~j(0) + ~2(0)) ~o = A~bo (3.26) 

~,,(k)(b,o+~,2(k)@o=AOk, k ~ O  and 09=c~k (3.27) 

A consequence of the presence of the resonance of infinite order is that topos 
and chronos will show all the wavenumbers and frequencies appearing in 
the problem unless some additional symmetry is assumed, such as, for 
instance, some (nongeneric) restriction on the shape of u~ and u2. 

4. SUPERPOSIT ION OF N TRAVELING W A V E S  

The case of superposition of more than two traveling waves does not 
introduce any new difficulty besides the fact that in practice the study of 
the arithmetic relations between the frequencies 09i and the wavenumbers ki 
describing a resonance becomes rapidly cumbersome. 

Let us consider the superposition of N traveling waves 

N N 

u ( x , / ) =  ~ Ud(X, t ) =  ~ ga(X--Cdt) (4.1 
d =  1 d =  1 

of propagation speeds ca and shapes gd, d= 1, 2 ..... N. For the sake of 
simplicity, we introduce an order among the frequencies o9 and the wave- 
numbers k inside a resonance, even if this knowledge can be recovered 
from the determination of the sequences of wavenumbers {k~ ..... k~,...} and 
frequencies {09j ..... 09i,.-. }, and the velocities c a. 

D e f i n i t i o n  4.1. A resonance is a maximal set of integers 

o r  

{091, kl ..... 09i, ki,... } (4.2) 

{k~, 091 ..... ki, 09,,... } (4.3) 
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such that the first two elements are necessarily a frequency co, and a 
wavenumber k~. After this first pair, two (or more) frequencies and/or two 
(or more) wavenumbers can be consecutive, but they necessarily satisfy the 
two following points: 

(i) The frequencies 09i, on the one hand, and the wavenumbers kj, on 
the other hand, are strictly increasing sequences, namely 

o9;, < 09~ if i~ < i 2 

and 

(ii) 

(4.4) 

kj <kj2 if J,<J2 (4.5) 

For each kj following 09~ and each 09i following kj in the chain of 
a resonance [we say that kj (resp. 09i) follows 09i (resp. kj) if there is no 
other 09 (resp. k) between kj (resp. 09;) and 09,. (resp. kj)], the frequency and 
the wavenumber are related by the relation 

09i = cakj (4.6) 

where d =  1 ..... N depends upon i and j. As in the case of two traveling 
waves, we refer to the "order of a resonance" (which may be finite or 
infinite) as the smallest number among the number of wavenumbers k and 
the number of frequencies co of the resonance. 

We now add some remarks to this definition. 

R e m a r k  4.2. 1. The condition (i) of Definition 4.1 implies that 
that the speed Ca arising in Eq. (4.6) strictly increases for a sequence of 
frequencies which follows a given wavenumber k and strictly decreases for 
a sequence of wavenumbers which follows a given frequency co. 

2. A sequence of frequencies 09 between two wavenumbers or a 
sequence of wavenumbers between two frequencies has at most N - 1  
elements (N being the total number of individual traveling waves). As a 
consequence, the number of frequencies and the number of wavenumbers 
in a resonance are both either finite or infinite. 

3. From the previous point of this remark we can see that in the case 
of the superposition of two traveling waves ( N = 2 )  the frequencies and 
wavenumbers in a resonance alternate: 

o r  

col, kl ,  092, k2 .... (4.7) 

kl ,  091, k2,092 .... (4.8) 

and therefore in this case (4.6) is equivalent to (3.6) and (3.7). 

822/76/3-4-18 
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4. For N >  2, a given resonance may not include the N propagation 
speeds c~ ..... cN present in the superposed function u(x, t), since we can 
build a resonant sequence with a smaller number of velocities. Obviously, 
at least two velocities are, however, needed, unless we deal with a 
degenerate resonance with only one frequency co and one wavenumber k. 

We now follow the same procedure as for the case of the superposition 
of two traveling waves ( N =  2). Since we get the same results with similar 
proofs, we avoid going into details. Instead, we prefer to add a comment 
which may be useful in practice. When one performs the biorthogonal 
decomposition of (4.1), resonances are studied by examining the Fourier 
spectrum of the topos and chronos: a resonance is detected by the existence 
of Fourier peaks located at the same wavenumber in various topos and at 
the same frequency in various chronos. Again, the number of such topos 
and chronos is twice the order of the resonance. Since the velocities are not 
known at this point, the ordering of the wavenumbers k and the frequen- 
cies co inside a resonance may be a delicate task for large resonances. This 
is why it is always better to study the low-order resonances first and deter- 
mine the velocities before proceeding with higher-order resonances. 

Moreover, it is worth mentioning that the biorthogonal decomposition 
makes a clear distinction between the energies of the various spatiotem- 
poral (biorthogonal) modes, i.e., topos and chronos, of the signal (given by 
the square of the eigenvalues of the operator U) and the spatial and tem- 
poral Fourier amplitudes of the topos and chronos which are related to 
their orientation with respect to the Fourier basis. 

R e m a r k  4.3. Suppose that we are only interested in identifying, in 
a given signal, the number of traveling waves and their velocities. One may 
consider the technique proposed by ref. 35, consisting in performing a first 
Fourier transform, to obtain, for instance, ~(k, t), selecting a wavenumber 
k=ko ,  and performing the temporal Fourier transform of 6(ko, t). The 
frequencies ~o thus detected will indicate the possible existence of traveling 
waves of velocities to/ko. The issue is then the following: is it possible, in 
this manner, to detect all traveling waves, or, equivalently, does ko exist 
and, in the case of existence, how can we select the appropriate ko? Note 
that if a temporal Fourier transform is performed first, requiring the selec- 
tion of a given frequency, the same question arises. Clearly, the only wave- 
numbers ko (resp. frequency COo) which will lead to the resolution of this 
problem are those for which the Fourier transform t~(ko, t) [resp. h(x, COo)] 
contains all possible frequencies. This implies that ko (resp. 090) must 
be present in a resonance of all the traveling waves present in the signal. 
It is clear that if we are not in the generic case (see the definition for 
"genericity" above), there may not be a common resonance to all traveling 
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waves and such a wavenumber ko (resp. a frequency O9o) does not exist. In 
the generic case, our analysis implies that ko (resp. O9o) must be a multiple 
of ~ =  I-Lq; (resp. fi=l--I; pi), which we cannot determine before invest- 
igating the set of all velocities. 

Although it is possible to "scan" the wavenumbers (resp. frequencies) 
and check the corresponding frequencies og(k) [resp. wavenumbers k(og)], 
it seems difficult to account for all traveling waves without knowing their 
number a priori. The success of such a technique is thus limited to very 
special situations. In contrast, the biorthogonal decomposition, combined 
with the analysis performed in this study, will provide a reliable algorithm 
in both generic and nongeneric cases. In the case of continuous spectra, 
any spatial (resp. temporal) Fourier transform t~(k, t) [resp. fi(x, 09)] may 
contain all the frequencies (resp. wavenumbers). In the next section, we will 
see that wavepacket resonances are present in this case and therefore, for 
any practical purpose, the difficulty underlined above remains. 

5. D I S P E R S I V E  W A V E S  W I T H  D I S C R E T E  S P E C T R A  

In this section, we mention an extension of the results of the two 
previous sections to a more general situation where the waves u~ ..... uN are 
no longer uniformly traveling waves. In fact, we used the traveling wave 
properties only in Eq. (4.6) defining resonances. 

Let us now suppose that each wave ua(x, t) has a (Fourier) dispersion 
relation given by a more general function that the linear one of Eq. (3.6), 
namely 

o9~ = c a(kj) (5.1) 

Since we are interested in studying the superposition of such waves, we can 
suppose, without loss of generality, that each function ca is an isomorphism, 
namely it has only one univalued branch in the (o9, k) plane. In the case of 
several branches, one can consider that the wave is the sum of different 
waves, one for each branch. The case where a branch is multivalued can 
be locally reduced, except in a few pathological situations, to a univalued 
branch and then again each local contribution can be treated as an indi- 
vidual wave. 

Now, it is easy to realize that (5.1) also characterizes the support of 
the spectral measure of Ua. Therefore, the only modification required here 
consists in replacing the equations (4.6) defining a resonance by the new 
equations (5.1). Then, the results of Sections 3 and 4 still hold. 

Nevertheless, the inverse problem of reconstructing the various waves 
is very delicate in practice, the reason being that the functions Cd are 
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not known a priori and their reconstruction from the knowledge of the 
resonances can be a difficult puzzle. 

6. THE CASE OF A CONTINUOUS SPECTRUM 

It is clear that even in the case of finite domains we cannot avoid from 
a rigorous point of view the case where continuous spectra appear. Indeed, 
the ratio between the velocities may be irrational or the velocities may be 
irrationally related to the spatial and temporal sizes of the domain. Here 
the assumption of a discrete spectrum will systematically lead to the 
wrong conclusion that there is no resonance since the arithmetic condition 
between the frequencies and wavenumbers will never be satisfied. It will be 
then concluded that the two waves do not interact or, equivalently, that the 
corresponding operators commute, which obviously does not make sense. 

If U~ and U2 are two traveling waves with continuous spectra, it is 
known that the notion of "wavepacket" may be introduced for handling 
this situation. We will see that the spectral analysis of U j, U2, and U, + U2 
naturally leads to the introduction of such a notion. 

First, we recall that for a single uniformly traveling wave u(x, t) of 
speed c with a continuous spectrum a spectral representation of 

is given by 

P___ (0 o)(0  o) 
In such a representation, V is a multiplication operator since we can 
consider the vectors ~b E) ~ as functions of (k, co). The generalization of the 
analysis of Sections 3 and 4 can then be performed quite easily as follows. 
For every Borel set ~ in K, let 8 =  c8 be the corresponding Borel set in/2. 
We then consider the corresponding projections P6 and P~ on the set of 
functions with support in 6 and ~. 

In case where 6 and therefore also ~ are two (small) intervals, we call 
such a pair of projections a wavepacket, for obvious reasons. It is clear 
from (6.2) and the fact that P" is a multiplication operator if u is a traveling 
wave that the corresponding spectral projections of I? are of the form ~36) 

(o o) /63, 
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and therefore they are generated by wavepackets.  Now, the results of 
Sections 3 and 4 can be extended by replacing delta functions by wave- 
packets. Again, the key notion for studying the superposit ion of traveling 
waves is that of resonances. 

We now demonst ra te  how it works  for the superposit ion of two travel- 
ing waves since the generalization to more  than two traveling waves is 
straightforward. Our  goal here is to construct invariant subspaces for 
U~ + U2 in order to evaluate the space-time dynamics in these subspaces 
by an approximate  dynamics with a discrete spectrum. As expected, the 
interaction of U ~ a n d  U_~, which appears  in the noncommuta t iv i ty  of the 
operators  or equivalently in the "mixture" of their spectral projections, 
leads to a spreading of the wavepackets  along the resonances. We now 
formulate these ideas in a precise way. 

Defini t ion 6.1. The resonance generated by the wavepacket  (6, $), 
where 6 is an interval in K and 6, 6 = ci6, i = 1 or i = 2, the corresponding 
interval in Q is the two-side infinite sequence 

. . .$ , ,_ , ,  6 , ,_ , ,  $,,, 6 ...... (6.4) 

n going from - ~  to + ~ ,  where 

6,,=ci6,, ( 6 . 5 )  

6,, +~ = c j6 , ,  (6.6) 

with j = 1 if i = 2 and j = 2 if i--- 1. The nonover lapping condition 

6,, _ i n 6,,  = ~ ( 6 . 7 )  

$,,_, n $,, = ~ (6.8) 

for all n is 

c I - -  c 2 
- - ~ o > e  (6.9) 
C I --{-- C 2 

for a resonance generated by a wavepacket  centered on 09 0 and of radius e. 
Of course, if at least one velocity is negative, (6.9) should be written with 
absolute values. In any case, we see that it is always possible to build a 
nonover lapping resonance from a wavepacket  centered at any % ,  provided 
that the radius e is sufficiently small, keeping the spreading also small 
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compared with the distance between two consecutive wavepackets in the 
resonance. 

We now express the equivalent of Theorem 3.5. 

T h e o r e m  6.2. The resonance generated by a wavepacket 6 = 6  o 
and 6 = 6o defines the smallest subspaces, 

P,~ = ~ P~o and P,~ = ~ P6. 
n n 

invariant by UI + 02 and containing the given wavepacket. 

ProoL The proof is easy and makes use of functional calculus. (36~ 
Now, we consider a wavepacket such that condition (6.9) is fulfilled so 

that the corresponding resonance is made of wavepackets which do not 
overlap in K and O but, of course, interact because of the chain rule (6.5) 
and (6.6). 

Because of the accumulation of wavepackets at zero frequency and 
wavenumber (oJ=0, k = 0 )  and the spreading for large frequencies and 
wavenumbers, we cannot in general approximate a wavepacket resonance 
by a "corresponding" resonance with a discrete spectrum for which the 
results of Section 3 are available. In order to do this, some infrared and 
ultraviolet cutoffs need to be performed. Usually, the infrared cutoff is 
justified by a finite-size argument and the ultraviolet one by a fast decay of 
the Fourier coefficients of u~ and u2. Note, however, that the validity of 
such assumptions depends on the particular problem consideredJ 371 But 
if these cutoffs are justified, each traveling wave can be replaced by one, 
with a discrete spectrum, whose shape is defined by the amplitudes at 
each central point k, of the wavepackets. The latter are computed by a 
normalized integral of the continuous amplitude over the width of the 
resonance. We then obtain two traveling waves satisfying the results of 
Section 3. 

This approximation is related to Weirs criterion, (361 from which a 
continuous spectrum may be evaluated by "approximated" eigenvalues, but 
we refrain from going further on this topic since it is beyond the scope of 
the present study. 

7. B I F U R C A T I O N S  

We now address the question of the possible spatiotemporal bifurca- 
tion mechanisms which lead to the superposition of traveling waves. 
The terminology "bifurcation" here denotes a qualitative change in the 
spatiotemporal nature of the solution, an example of which is given by 
the appearance of an additional traveling wave in a given superposition of 
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traveling waves, such as the transition between a traveling wave and the 
sum of two traveling waves. We should mention that, a priori, a simple 
change in the shape of the existing waves without influencing the spatio- 
temporal structure of the solution [as studied in ref. 10 by using (spatial) 
bifurcation theory-I is not, from our viewpoint, a (space-time) bifurcation. 
In analogy with Poincar6's terminology regarding temporal systems (see, 
e.g., ref. 21 ), a space-time bifurcation is characterized by a lack of smooth- 
ness in u(x, t) as a function of a parameter and occurs at the intersection 
between two branches of "stable" or "equilibrium" solutions. For this 
purpose, we consider that the operator U depends on a real parameter 2. 
The smoothness of this dependence, as well as the mathematical definition 
of "smoothness" we need to consider in practice, are still open issues. 
Although an understanding of the physical mechanisms and/or a study of 
the mathematical restrictions due to the existence of a known evolution 
equation is needed in each case, we believe that (space-time) bifurcations 
are generic in a certain sense, independenty of the particular conditions of 
the function considered. We are interested here in these generic features 
and we will attempt to define the general questions which need to be 
addressed for detecting such bifurcations. In the next section, we present 
experimental data where such questions seem to be indeed relevant. 

The most interesting situation arises when the dependence of the 
operator U upon the parameter 2 is continuous, even differentiable, but 
nonholomorphic, t251 In this case, there are two ways in which a new 
velocity, and therefore a new traveling wave, may appear in a given super- 
position of traveling waves. 

The first one corresponds to the bifurcation parameter values at which 
there is (at least) one degeneracy of eigenvalues which we cannot remove 
by small perturbations in the complex plane. We denote by 2~ one of these 
values. This situation, which is reminiscent of what is called "phase defects" 
in two-dimensional patterns, t~Sj can be well understood from the following 
geometrical point of view. For the parameter values ,~ close to 2c but such 
that 2 < 2c, the eigenvectors are uniquely defined, since the eigenvalues are 
nondegenerate and it follows from the general perturbation theory of linear 
operators that they will smoothly evolve as 2 varies. For ). = 2 ,  the sub- 
space corresponding to the degenerate eigenvalue is spanned by equivalent 
eigenvectors. Therefore, it may happen that in passing through 2,. a jump 
is observed in the eigenvectors due to their rotation in the corresponding 
subspace. We recall that this general perturbation theory is applicable to 
the operator 
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and thus this rotation may result in a new linking between the topos and 
the chronos, for instance, 

and 

( q~'(x)'],( "rp2(x)'] for 2<2,.  (7.2) 
~,,(t)J \~,_(t)J 

( q~,(x)'~, for 2>2, .  (7.3) 
r \r 

but other rotations are possible. It is well known (see ref. 25 or ref. 1 for a 
related problem) that such a jump is related to a cut in the complex plane 
of the extended parameter. (This cut is the projection in the complex plane 
of the intersection of the eigenvalue surfaces.) Therefore, in this case it is 
impossible to go from 2 < 2,. to 2 > 2,. on a path which avoids the described 
jump. In contrast, when a jump is not observed on both sides of an eigen- 
value degeneracy such a path can be avoided in the complex plane due to 
the fact that the associated singularity (corresponding to the projection of 
the intersection of the eigenvalue surfaces) does not cut the complex plane 
into two parts. Hereafter we refer to this situation as the self-avoiding case. 

In the case of propagating phenomena treated in this paper, a new 
velocity is clearly created at a (spatiotemporal) bifurcation point which, 
from the analysis of Sections 3 and 4, can be detected through the analysis 
of new resonances. From a practical point of view, one can distinguish 
between a bifurcation and a self-avoiding situation, both possible when a 
fourth-order degeneracy of eigenvalues (the second-order degeneracy men- 
tioned above is not considered here) occurs, by studying the persistence of 
resonances as the parameter increases further. 

As an example, a second velocity c2 may emerge from a traveling wave 
of velocity c~ via the previous (bifurcation) mechanism, leading to the birth 
of the resonance co, k, co', k '  which are the frequencies and wavenumbers 
of the two crossing topos and chronos, where w / k = o ' / k ' = c ~  and 
~o/k' = c2. Note that a situation where a chrono-t0po pair corresponding to 
the largest eigenvalue before 2,. corresponds to the smallest eigenvalue after 
2,. is a self-avoiding case where no rotation in the subspaces has taken 
place and no new velocity is generated. An illustration of this possibility 
will appear in the second example (for 2 = 1 ) and third example of the next 
section. 

The second way in which a new velocity may appear from a given 
superposition of traveling waves as a parameter 2 varies is by a direct 
growth of a new wave of very small amplitude. Note that this case may be 
considered as a particular case of the previous one by considering the 
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zero eigenvalue of the initial operator V (for 2 < 2,.). It makes sense, how- 
ever, to treat this case separately because the new eigenvalues have small 
amplitudes, and therefore are difficult to find (in practice, no degeneracy 
can be observed among the computed eigenvalues). Nevertheless, the 
appearance of a new velocity in this case will be detectable by the trace of 
the resonances created by this new velocity on the large-energy topos and 
chronos. 

We note that in this first case where a crossing of nonzero eigenvalues 
occurs the newly formed traveling wave is born with a nonzero amplitude, 
while in the second 6ase the new traveling wave has zero energy at its birth. 
Although a bifurcation takes place in both situations, the difference 
between the two seems to be close to that existing between subcritical and 
supercritical bifurcations in temporal dynamical systems theory. Neverthe- 
less, the formulation of an unstable branch in the first case is not clear from 
our study. 

Moreover, we would like to point out that there is an interesting 
relation between this "microscopic" level of the bifurcations occurring 
between the eigenvalues (namely the energy of the various modes) permit- 
ting the rotation of the eigenmodes and a global or "macroscopic" 
behavior of the dynamics. Recall here that several global (biorthogonal) 
quantities were introduced (3~ among which the most relevant one in the 
present context is the entropy defined as 

1 N 

H ( u ) =  I n N  y" p,,lnp,, (7.4) 
n =  ) 

where 

A,] (7.5) P. - u , Z,,=~A;, 

Since this quantity represents the distribution of energy along the spec- 
trum, as shown in previous work, ~3) it may be used as an order parameter 
for detecting bifurcations which precisely occur at degenerate points in the 
spectrum (see ref. 3 for the detection of such points in a fluid experiment, 
although the connection with bifurcations was not clear there; see also our 
third example below). At this point, it is less obvious to us how to give a 
thermodynamic meaning to the entropy in the present context. In other 
words, whether the latter has a good statistical behavior when the number 
of superposed traveling waves and/or that of resonances increase to infinity 
remains an open question. 

Finally, it may be worth mentioning that our space-time bifurcation 
approach is analogous to that provided by the center manifold theorem in 
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the (classical) temporal bifurcation theory (see, e.g., ref. 21) in the sense 
that we restrict the stability study to the subspace, which may not be stable 
under small perturbations. The analogy, however, is still far from being 
complete, as the powerful tool of normal forms, for instance, is not yet 
available in our case. 

8. E X A M P L E S  

As an example of spatiotemporal resonances, we consider the super- 
position of two traveling waves u~(x, t) and uz(x, t) of different shapes and 
velocities: 

u(x, t)=u,(x, t)+ u2(x, t) (8.1) 

both defined on the same spatial domain L, during a time duration of T. 
The individual waves u~, i = 1 and i=  2, are defined by 

ui(x, t)=~,~i(ki)sin I2~ ki --{ x - c , k ,  (8.2) 

where the velocities (normalized with L/T) are c. T/L = 1, c2 T/L = 2/3, the 
wavenumbers appearing in the traveling wave ui(x, t) being 

k~= 1, 2, 3, 4, 5, 6, 8, 9 if i=1  (8.3) 

k~=3 ,6 ,9 ,12  if i = 2  (8.4) 

and the Fourier amplitudes being defined as 

I0 
gi(ki)= k--~ if i =  1 

21 
ki if i=  2 (8.5) 

Figures 1 and 2 display three-dimensional representations of the traveling 
waves ul(x,t) and u2(x, t), respectively, while Fig. 3 shows the same 
representation of the wave superposition u(x, t). Now ignoring Eqs. 
(8.1)-(8.5), it is difficult to realize that u(x, t) is indeed the superposition of 
two traveling waves, and, afortiori, to determine their propagation speeds, 
shapes, and resonances. The biorthogonal decomposition, combined with 
the analysis of Sections 3 and 4, allows us to address this problem in a 
straightforward manner, as we now show. 
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Fig. 1. Three-dimensional representation in space and time of the traveling wave ut(x  , t) 
defined by Eqs. (8.2), (8.3), and (8.5) (see text). 

Fig. 2. Three-dimensional representation in space and time of the traveling wave uz(x, t) 
defined by Eqs. (8.2), (8.4), and (8.5) (see text). 

Fig. 3. Three-dimensional representation ita space and time of the superposition of two 
traveling waves u(x, t) given by Eqs. (8.1)-(8.5) (see text, Section 8). 
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The biorthogonal decomposition is numerically applied to u(x, t) over 
a spatial length of 0.5 and a temporal interval of 1.02, uniformly sampled 
with 500 spatial points and 680 time points. The first 30 eigenvalues of the 
biorthogonal spectrum, displayed in Fig. 4, show that 16 eigenvalues only 
are nonzero and that these are (second-order) degenerate. This, however, 
does not lead to a conclusion regarding the full nature of the function. For 
this, we compute the Fourier transforms of the topos and chronos shown 
in Fig. 5,.where we have regrouped pairs of topos and chronos with peaks 
at common wavenumbers and/or frequencies (only one out of the two pairs 
corresponding to a degenerate eigenvalue is considered, since they have 
the same Fourier spectra). Such groups, which we can identify as being 
R, = {(~,~, q,~), (r q,7), (~'1~, ~'~5)}, R~ = {~,,, ~,)}, R3 = {(r q,~)}, 
R4-- {(r (tilt)}, and R5 = {(r ~P3), (r ~P13)}, define resonances. R3 
and R 4 are two degenerate resonances, involving only one frequency and 
one wavenumber, and R~, R2, and R5 are resonances of order 3, 1, and 2, 
respectively. The computation of the ratio between the (ordered) wave- 
numbers and frequencies within each resonance shows that there are only 
two velocities, 1 and 2/3 (normalized with L/T). Finally, the reconstruction 
of the traveling waves ul(x, t) and u2x, t) easily follows, as explained in 
Section 3. 

We now illustrate how the spatiotemporal resonances described in this 
paper are a fundamental point for the understanding of the interaction 
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between various traveling waves, which even goes beyond the specific cases 
treated in this paper. The fact that they c6rrespond to invariant sub- 
spaces of the biorthogonal operator make their extraction particularly 
straightforward via biorthogonal decompositions. The following questions 
may then arise. Is this a specific feature of the latter which fits particularly 
well the specific case treated in this paper, namely the superposition of 
various traveling waves, or is this a more general property? In other (more 
complex) wave propagation phenomena, can one still define the notion of 
resonances? In the case of a positive answer, can biorthogonal decomposi- 
tions still extract them? While a general answer to these questions is dif- 
ficult because of the lack of a precise form for the space-time function 
u(x, t), we can illustrate the robustness of the method described in this 
paper even in cases where the hypotheses of Section 3 are no longer true. 
For this purpose, we consider an alternative version of Eq. (8.1), namely 

u(x, t) = ul(x, t) + ~2(x, t) (8.6) 

where u~(x, t) is the traveling wave defined by Eqs. (8.2), (8.3), and (8.5) 
and 

~z(x, t ) = g z ( x - c z t - - e t  2) (8.7) 

where e is a parameter. The function g2 and the coefficient c2 are the same 
as in the previous example [see Eq. (8.5) for g2]. If e = 0 ,  then fi2(x, t ) =  
u2(x, t) and we recover the previous case. Instead, for nonzero parameter 
values, fi:(x, t) is no longer a traveling wave and its Fourier transform has 
nonzero coefficients for all frequencies and wavenumbers (leading to a fully 
broad Fourier spectrum), as a straightforward analytical computation 
shows. Even in this more complex situation, we now show that resonances 
can be directly extracted from the spectral decomposition of the operator 
U. In this case, we define resonances in a similar manner as in Section 3, 
namely as sets of frequencies and wavenumbers corresponding to closed 
sets of eigenequations of the spectral decomposition of the operator 
V = VI + ~'2 in terms of the spectral decompositions of VI and ~'z. Keeping 
this definition in mind, we can then understand the resonance structure 
of the dynamics, at least for e~<2. We now describe our analysis for 
the particular case e =  1 which we have numerically investigated in the 
same spatiotemporal domain and discretization as in the case e = 0. The 
biorthogonal spectrum is still second-order quasidegenerate and we restrict 
the following description of resonances to only one mode in each pair. We 

first identify three resonances / ~ = . { ( ~ ,  ~b,), (53, ~3)}, /~b = {(~5, ~bs)}, 
and /~c= {(~lt ,  ~b~l)}. Due to the existence of two new nonzero eigen- 
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values -4~7 and ,4t8, all the remaining modes merge into one large 
resonance /~d (with becomes larger as e increases). Comparing this case to 
the unperturbed situation e = 0 ,  one can observe that the effect of the 
perturbation consists in breaking the resonances R5 and R~. A portion of 
R5 forms the new (degenerated) /]b and the remaining part joins R 3 to 
build Ru. Meanwhile, R~ gives the new (degenerated)/~c on the one hand, 
and joins R4 and R2 to lead to the formation of/~a on the other hand. We 
would like to conclude that this example shows how the biorthogonal 
analysis, by maintaining the one-to-one correspondence between spatial 
and temporal orthogonal modes, permits an easy extraction of the dynami- 
cal information for the superposition of traveling waves or more complex 
spatiotemporal functions. While it is certainly true that a space-time 
Fourier analysis does not lose any information, in general, it is not adapted 
to the space-time dynamics. One may wonder, for instance, whether 
resonances (of frequencies and wavenumbers) in the previous example still 
play a role. If the perturbation from the superposition of traveling waves 
is relatively small, the biorthogonal analysis gives a positive answer, 
although a more important perturbation has the effect of linking most 
frequencies and wavenumbers into one large resonance, indicating that 
(generalized) resonances should not be defined, in this more general 
context, with respect to Fourier modes. Finding the invariant subspaces of 
the biorthogonal operator will still remain a powerful tool. Moreover, our 
analysis of real experimental data (such as that of our third example, see 
below) has shown that Fourier modes of small energy which play a crucial 
role in resonances are hard to distinguish from the noise level of the signal 
in the (space-time) Fourier analysis of the latter. In contrast, their 
appearance in topos and chronos, which, we recall, are renormalized, is 
often much clearer since Fourier peaks there have a vectorial orientation 
significance rather than a pure energetic meaning. 

Our second example illustrates the fact that a degeneracy of eigen- 
values does not necessarily imply the occurrence of a bifurcation. For this, 
we consider the function 

u~.(x, t )=cos[2n(klx-klcl t)]  +2cos[2n(k2x-k2clt)] (8.8) 

where 2 is the bifurcation parameter. When 2 is zero, dim x(X)=  
dim z ( T ) =  2 (the spectrum is second-order degenerate), and dim x ( T ) =  
dim x ( T ) = 4  as soon as 2 becomes nonzero (for 2 5 1 ,  the spectrum is 
second-order degenerate). At the parameter value 2 =  1, the spectrum 
becomes fourth-order degenerate, but the isomorphism between topos and 
chronos stays such that the velocity is still c1: there is no spatial/temporal 
mode crossing and therefore no bifurcation takes place. 
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Our third example is extracted from the biorthogonal analysis of 
experimental data in a thin liquid film flowing down an incline described 
at length in a forthcoming paper, t~3~ Mode crossing situations such as 
those described in Section 8 are ubiquitous there and we present here one 
example only. Accurate measurements of the film thickness h(x, t) as a 
function of space (downstream distance) and time have been obtained via 
a fluorescence imaging method by Liu et a/. ~29~ Details regarding the 
experimental apparatus and the measurements method can be found in refs. 
28 and 29. These authors have shown experimentally that the initial 
instability is convective and that the traveling waves thus formed are noise- 
sustained. The influence of the noise is investigated by varying the level of 
periodic external forcing at the inlet. Two parameters are thus varied in the 
experiment, the Reynolds number and the frequency of the small-amplitude 
external perturbation. The data that we now present have been taken at the 
same (small) external frequency of 4 Hz and at Reynolds numbers 
Re = 39.1. For such a small external frequency, subharmonic instabilities of 
the (primary) waves have been detected by observing the formation of sub- 
harmonic peaks in the power spectra of the local (spatial) wave slope 
measured as a function of time two probes, t3~ These peaks are said to be 
consistent with the coalescence of the waves in pairs as they travel, a 
phenomenon which roughly doubles the (spatial) period. It is, however, 
observed that "the period doubling is irregular both in space and time," 
leading to "a spatial-temporal chaos downstream." 

The data set is sampled on a spatial mesh of 512 points and a tem- 
poral mesh including 600 points, the time step and the spatial step being 
0.067 sec and 0.065 cm, respectively. The center of the spatial window is 
located at a downstream distance of 82 cm..The experimental signal as a 
function of space and time is represented in Fig. 6. The biorthogonal 
spectrum (Fig. 7) shows a second-order quasidegeneracy of the eigenvalues 
above a certain level of energy (the first eigenvalue is not represented here, 
as it is nondegenerate, corresponding to a first term where the topo coin- 
cides with the spatial average of the signal and the chrono is constant, t3'4~ 
We note that two pairs of eigenvalues (A6, AT), (As, ,49) a r e  relatively 
close to each other. The Fourier transforms of the corresponding chronos 
and topos are displayed in Tables I and II showing that chronos and topos 
r ~06, r ~Ps are not pure Fourier modes, but that additional (small- 
amplitude) peaks in the power spectra are present. The two following 
remarks resulting from the same analysis of data recorded at a slightly 
smaller Reynolds number (Re = 35.8) support the assumption of a rotation 
of eigenvectors (chronos and topos) in their respective subspaces at a 
Reynolds number for which the fourth-order degeneracy ,46 = A7 = A8 = A9 

occurs: (1) At R e =  35.8, chronos r Cs, and topos ~06, ~08 are Fourier 

822/76/3-4-19 
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Fig. 6. Space-time representation of the experimental signal of Liu et  aL tzg~ in a flowing film 
for a forcing frequency of 4 H z  at Reynolds number Re=39.1  (only 40 time steps are 
represented ). 

Fig. 7. 
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Table I. Frequencies (to;) in Hz and Ampl i tudes  (a;)  of  the  Fourier  
T ransforms of  the  Chronos fo r  n = 2 ..... 9" 

co 1 a I (02  a 2  

~z, ~3 4 0.49 
~4, ~5 8 0.49 
~6, ~7 12 1.11 x 10 -z 16 0.48 
ffs, ~9 12 0.47 16 1.54 x 10 -2 

"Peaks occur at the forcing frequency, 4 Hz, and its subharmonics. 

modes with peaks located at 12 and 0.45 for I/J 6 and ~o 6, respectively, and 
16 and 0.57 for ~'8 and ~8, respectively; (2) at R e =  35.8, extra Fourier 
peaks in these topos and chronos could not be detected above the 
(estimated) noise level. This rotation, however, is consistent with the two 
phenomena described in Section 6, namely a bifurcation (from one to two 
traveling waves) and a self-avoiding situation. The examination of the 
resonances at higher Reynolds numbers will be reported in ref. 13 to 
address this point, in particular regarding the error made by a relatively 
coarse resolution in Fourier  space. Although the nature of  the previous 
rotation of  topos and chronos in eigenspaces can be fully understood from 
Tables I and II, which follows the development of  Section 7, the rotation 
itself was first detected by the global, "macroscopic" entropy function with 
first increases due to the eigenvalue degeneracy and then decreases (as in 
the fluid experiment example analyzed in ref. 3). This abrupt  variation of 
the entropy as a function of  the control  parameter is described in more 
detail in ref. 13. 

Table II. W a v e n u m b e r s  (kj)  in c m - 1  and Ampl i tudes  (bj )  o f  the  Fourier  
T ransforms of  the  Topos fo r  n = 2 ..... 9 a 

kl bt k2 bz 

~z, c, b3 0.15 0.43 
~b4, r 0.30 0.24 
q~6, qb7 0.45 1.07 x 10 -2 0.57 0.21 
<Ps, ~b9 0.45 0.26 0.57 3.1 • 10 -2 

~ Peaks occur at ko~0.15 cm -j and its subharmonics, within the error due to the discretiza- 
tion in Fourier space. 
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9. CONCLUDING REMARKS 

To conclude, we have shown that biorthogonal decompositions can 
characterize space-time dynamical behavior in wave propagation pheno- 
mena in an efficient way. Although such an expansion corresponds to a 
spatiotemporal Fourier decomposition in the case of a uniformly traveling 
wave, this is not the case as soon as (at least) one additional (pure) 
traveling wave (of different velocity) gets superposed to the first one. Such 
a superposition occurs in various situations, such as in the N-soliton 
solutions of the Korteweg~cle Vries equation and in the stable standing 
wave solution (which can be considered as the sum of two traveling waves 
propagating at velocities c and - c )  of two coupled Ginzburg-Landau 
equations (15) also arising in Taylor-Couette flow. t'8~ One could argue 
that biorthogonal modes (topos and chronos) are then still very close to 
Fourier modes and finding them should not be worth the trouble ... .  Our 
investigations have revealed that the spatiotemporal structure of such a 
solution lies precisely in the difference between biorthogonal and Fourier 
modes, due to the presence of (spatiotemporal) resonances (namely inter- 
actions between the various traveling waves). Resonances appear as 
invariant subspaces under the action of the biorthogonal operator, which 
defines closed sets of equations, so that topos and chronos can be classified 
according to the specific resonance to which they belong. Such a technique 
thus permits the identification of the various traveling waves (namely their 
velocity, their amplitude, and their shape) present in the solution. 

In comparison with previous work using other techniques, we would 
like to emphasize that our procedure does not make any assumption on 
the shape and velocity of the various traveling waves, the number of the 
traveling waves and/or resonances included, the iinearity or nonlinearity of 
the (dynamical) processes involved, and the nature of the resonances. For 
instance, regarding the latter, resonant interactions can occur globally or 
locally in spectral space and globally or locally in (space-time) physical 
space. The existence of spatiotemporal resonances, which may be spread 
over a wide range of frequencies and wavenumbers, as found in this paper, 
should have implications on our fundamental understanding of turbulence 
for which a basic issue is whether wavenumber interactions are local in 
Fourier space or not. ~451 Moreover, many studies have concentrated on 
global resonant wave interactions, an assumption which is obviously not 
valid in case of strong inhomogeneities and locally interacting events. The 
propagation of internal gravity waves in a stratified shear flow where both 
the stratification and the shear vary in space and time (treated in ref. 20 for 
resonances between three waves) furnishes an example. 

Moreover, our technique, based on biorthogonal decompositions, 
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permits the prediction and analysis of (space-time) bifurcation events 
through which the qualitative spatiotemporal nature of the solution 
changes as a function of a parameter. These occur when two (or more) 
eigenvalues of the biorthogonal operator are degenerate (see the early 
detection of such possibility in ref. 3). This property implies that as the 
eigenvalues merge, the global, "macroscopic" entropy locally increases as 
the control parameter is varied. This point is extremely interesting, as it 
connects the "microscopic" spatiotemporal behavior of the solution to its 
"macroscopic" properties. The restriction of the study of the bifurcation to 
the degenerate subspace, together with the existence of the one-to-corre- 
spondence between topos and chronos (intrinsic to biorthogonal decompo- 
sitions), permit the prediction of the nature of the new solution. For 
instance, a traveling wave can undergo a transition to two traveling waves 
whose shapes, velocities, and amplitudes can be computed from those pre- 
sent slighly before the bifurcation. A spectrum degeneracy, however, does 
not necessarily lead to a bifurcation. 

Finally, we should mention that the technique developed in this paper 
for propagating wave phenomena is obviously valid for other types of 
spatiotemporal symmetries than translations (related to traveling waves). 
In this case, Fourier transforms will not play any particular role, but 
our notion of "microscopic" (space-time) bifurcations, together with their 
influence on "macroscopic" (statistical) properties such as the entropy, will 
still apply. 
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